Ammerländer Heerstraße 231 26129 Oldenburg

Konzept für die Oberflächenentwässerung des Bebauungsplan Nr. 51 "Gewerbegebiet Grasberg West"

INGENIEURBÜRO HIRSCH

Dipl.-Ing. Gunnar Hirsch

Eike-von-Repkow-Straße 32a D-26121 Oldenburg Telefon 04 41 - 7 12 48 Telefax 04 41 - 777 53 76 Email mail@ib-hirsch.de

Inhaltsverzeichnis

1.	Veranlassung2
2.	Lage des Bebauungsplangebiet
3.	Bedingungen der Oberflächenentwässerung2
4.	Geplantes Entwässerungssystem3
5.	Bemessung3
6.	Zusammenfassung4
Anl	age 1 - Übersichtskarte6
Anl	age 2 – Lageplan7
Anl	age 3 – Übersicht Einzugsflächen8
Anl	age 4 – KOSTRA Atlas des DWD in der Fassung 20209
Anl	age 5 – Bemessung von Regenrückhalteräumen nach DWA - A 117 Sondergebiet10
Anl	age 6 – Bemessung von Regenrückhalteräumen nach DWA - A 117 Gewerbegebiet11
Anl	age 7 – Berechnung Drosselöffnung12
Anl	age 8 – Übersicht Herkunftsflächen und Belastungskategorien13
Anl	age 9 – Bemessung nach M102 – Herkunftsflächen und Belastungskategorien14
Anl	age 10 – Bemessung zentrale Behandlungsanlage15
Anl	age 11 – Bemessung Absetzzone16
Anl	age 12 – Baugrunduntersuchung17

1. Veranlassung

Der Bauherr plant die Erschließung der Flächen des Bebauungsplanes Nr. 51 "Gewerbegebiet Grasberg West".

Im Zuge dieser Planung ist eine Aussage zur Oberflächenentwässerung für die betroffenen Flächen erforderlich. Das unterzeichnende Ingenieurbüro wurde damit beauftragt ein Oberflächenentwässerungskonzept aufzustellen. Dieses kommt hiermit zur Vorlage.

Grundlage des Konzeptes sind die Niederschlagsdaten nach KOSTRA-DWD 2020, das Arbeitsblatt DWA-A 117, das Arbeitsblatt DWA-A 102, sowie das Baugrunduntersuchung vom Büro Geologie und Umwelttechnik, Dipl.-Geologe Jochen Holst vom 10.09.2019

Aus dem Oberflächenentwässerungskonzept kann zu gegebenem Zeitpunkt eine Entwurfs- und Genehmigungsplanung zur Einholung einer Einleitungserlaubnis entwickelt werden.

2. Lage des Bebauungsplangebiet

Das Bebauungsplangebiet liegt in der Gemeinde Grasberg und umfasst die Flurstücke 203/4, 203/5, 202/7, 453/203, 202/16, 201/6 und 201/5. Mit einer Einzugsfläche von rd. 90.498,2 m² grenzt das Bebauungsplangebiet südlich an die Straße "Wörpedorfer Straße (L133)", westlich an den Ort Grasberg und nördlich an den Weg "Kötnerteilen". Dies kann der Übersichtkarte (Anlage 1) und dem Lageplan (Anlage 2) entnommen werden.

3. Bedingungen der Oberflächenentwässerung

Geplant ist es, das Oberflächenwasser im Bebauungsplangebiet zurückzuhalten und über eine Drossel der vorhandenen Vorflut (Wörpe), das sich südlich vom Bebauungsplangebiet befindet, zu zuführen. Durch die Drosselung ist es möglich, die hydraulische Belastung der weiterführenden Vorflut zu reduzieren.

Für den Oberflächenwasserabfluss des Bebauungsplangebietes wurde eine Drosselabflussspende von 1,0 l/(s*ha) von der unteren Wasserbehörde zu Grunde gelegt.

Die versiegelte Fläche setzt sich aus den Einzugsflächen und den mittleren Abflussbeiwerten zusammen, diese ist unterteilt in Erschließungs- und Verkehrsflächen mit einer Fläche von rd. 77.073 m² und ein Sondergebiet mit einer Fläche von 13.425,2 m².

Durch das Einleiten in ein Oberflächengewässer, wie in diesem Fall in die Wörpe, ist das Arbeitsblatt DWA-A 102 zu beachten.

Aufgrund des anstehenden Grundwassers ist eine Versickerung im Bereich des Bebauungsplangebietes nicht möglich.

4. Geplantes Entwässerungssystem

In dem Bebauungsplangebiet sind zwei Rückhaltungen von Oberflächenwasser geplant. Die erste Rückhaltung ist für die Sondergebietsfläche und die zweite für die Erschließungs- und Verkehrsflächen.

Das Oberflächenwasser der Sondergebietsfläche wird über eine Rückhaltung in Form eines Stauraumkanals auf dem Grundstück zurückgehalten. Das zurückgehaltene Oberflächenwasser wird gedrosselt in die geplanten Rohrleitungen in den Hauptverkehrswegen geleitet. Die Rohrleitungen werden in erster Linie für die Entwässerung der Erschließungs- und Verkehrsflächen genutzt und führen zur zweiten Rückhaltung in Form eines Beckens, im süd-westlichen Teil des Bebauungsplangebiets. Von dort soll das zurückgehaltene Oberflächenwasser über eine Drossel der Vorflut "Wörpe" zugeführt werden.

Bevor das Oberflächenwasser aus dem Bebauungsplangebiet gedrosselt der Wörpe zugeführt werden darf, muss es vorgereinigt werden. Die Vorreinigung besteht aus einem Absetzbecken mit einer Tauchwand, um Grob- und Schwimmstoffe zurückzuhalten. In der Vorreinigung wird der gedrosselte Zufluss der Sondergebietsfläche und der ungedrosselte Zufluss der Erschließungs- und Verkehrsflächen gemeinsam vorgereinigt. Nach der Vorreinigung wird das Oberflächenwasser im Regenrückhaltebecken (zweite Rückhaltung) zurückgehalten und gedrosselt der Wörpe zugeführt. Die Drosselung setzt sich aus den errechneten Drosselabflüssen der beiden Rückhaltungen zusammen. Um das gedrosselte Oberflächenwasser zur Wörpe zu leiten ist eine Rohrleitung DN 200 in dem Fußweg zwischen dem Weg "Kötnerteilen" und der "Wörpe" geplant. Die Vorflut weist eine ausreichende Tiefe auf und ist in diesem Bereich in einem guten Zustand, so dass das gedrosselte Wasser abgeführt werden kann. Um das Regenrückhaltebecken gegen rückstauendes Wasser der Wörpe zu schützen, ist am Ablauf eine Rückschlagklappe vorzusehen.

Um die Erschließungsflächen im Bebauungsplangebiet gegen Überflutung zu schützen ist eine Mindesthöhe von 5,00 m NHN einzuhalten.

5. Bemessung

Für das Sondergebiet mit der Einzugsgebietsfläche von rd. 13.425,2 m² und einer Drosselabflussspende von 1,0 l/(s*ha) wurde eine Bemessung des Regenrückhalteraumes nach Arbeitsblatt DWA-A 117 vorgenommen. Daraus ergibt sich ein Drosselabfluss $Q_{Dr}=1,34$ l/s. Des Weiteren werden die KOSTRA-DWD 2020 Daten aus dem Rasterfeld Spalte 130 / Reihe 91 "Grasberg" genutzt. Die Wiederkehrzeit des Bemessungsereignisses beträgt 10 Jahre, der Toleranzwert U_c ist 12 % und ist der KOSTRA-Tabelle zu entnehmen. Die Wiederkehrzeit ist aufgrund der Lage des Grundstückes gewählt. Die detaillierte Berechnung befindet sich im Anhang 5.

Die Bemessung hat ein erforderliches Volumen von $V = 594,3 \text{m}^3$ ergeben, unter Einbezug des Toleranzwertes U_c . Das Drosselbauwerk kann aus einem Schachtbauwerk DN1500 mit einer regelbaren Pumpe bestehen. Die Pumpe

pumpt das Regenwasser mit 1,34 l/s in den neuen Regenwasserkanal in den Hauptverkehrswegen, der zur zweiten Regenrückhaltung führt.

Die Bemessung nach DWA-A 102 hat ergeben, dass eine Vorreinigung des anfallenden Oberflächenwasser erforderlich ist. Deswegen befindet sich vor der Rückhaltung der Erschließungs- und Verkehrsflächen ein Absetzbecken mit Schlammraum, damit sich dort Grobstoffe absetzen können. Eine Tauchwand sorgt dafür das Schwimmstoffe nicht in die Rückhaltung gelangen.

Der Schlammraum hat eine Sohlhöhe von 2,20 m NHN und eine Tiefe von 0,75 m, das Volumen beträgt somit bei max. Wasserstand von 2,95 m NHN rd. 597,4 m³ (Anlage 8-11).

Für die Erschließungs- und Verkehrsflächen mit der Einzugsgebietsfläche von rd. 77.073,0 m^2 und eine Drosselabflussspende von 1,0 l/(s*ha) wurde ebenso eine Bemessung des Regenrückhalteraumes nach Arbeitsblatt DWA-A 117 vorgenommen. Daraus ergibt sich ein Drosselabfluss $Q_{Dr} = 7,71 \text{ l/s}$.

Des Weiteren werden die KOSTRA-DWD 2020 Daten aus dem Rasterfeld Spalte 130 / Reihe 91 "Grasberg" genutzt. Die Wiederkehrzeit des Bemessungsereignisses beträgt 10 Jahre, der Toleranzwert Uc ist 13 % und ist der KOSTRA-Tabelle zu entnehmen. Die Wiederkehrzeit ist aufgrund der Lage des Grundstückes gewählt. Die detaillierte Berechnung befindet sich im Anhang 6.

Die Bemessung hat ein erforderliches Volumen von V = 3.249,8 m³ ergeben, unter Einbezug des Toleranzwertes U_c . Das Volumen von V ~ 3.465,9 m³ kann durch ein Regenrückhaltebecken mit einer Grundfläche von ~ 1.775,6 m² und einer Oberfläche von ~ 2.192,7 m², bei einem maximalen Wasserstand von 1,75 m bereitgestellt werden. Die Sohlhöhe liegt bei 2,95 m NHN. Der Freibord vom maximalen Wasserstand zur Geländeoberkante des Beckens beträgt rd. 50 cm. Nicht berücksichtigt wurde das Volumen der an das Becken angeschlossenen Zuleitungen, sowie der Schächte und das Volumen des Absetzbeckens.

Der Drosselabfluss setzt sich aus dem Drosselabfluss der Sondergebietsfläche mit 1,34 l/s und dem Drosselabfluss aus den Erschließungs- und Verkehrsflächen mit 7,71 l/s zusammen und ergibt somit einen gesamten Drosselabfluss von 9,05 l/s. Das Drosselbauwerk kann aus einem Schachtbauwerk DN1000 mit einer 20 mm dicken herausnehmbaren Tafel aus PE-HD, die eine Drosselöffnung von 67,7 mm Durchmesser hat, bestehen. Das Drosselbauwerk wird im Bereich des umlaufenden Unterhaltungsweges des Regenrückhaltebeckens errichtet. Die Vorrichtung ist an dieser Position jederzeit gut zu revisionieren. Die Bemessung der Drosselöffnung ist dem Anlage 7 zu entnehmen. Das vorgereinigte und gedrosselte Oberflächenwasser wird dann der Wörpe zugeführt.

6. Zusammenfassung

Geplant sind zwei Rückhaltungen im Bebauungsplangebiet. Das anfallende Oberflächenwasser auf die Sondergebietsfläche wird dort mittels Stauraumkanal zurückgehalten und gedrosselt dem Regenwasserkanal in den Hauptverkehrswegen und somit auch dem Rückhaltebecken der Erschließungsund Verkehrsflächen zuführt.

Das anfallende Oberflächenwasser wird über ein Absetzbecken mit einer Tauchwand vorgereinigt, im Rückhaltebecken zurückgehalten und über eine Drossel in die Wörpe geführt.

Der gesamt Drosselabfluss setzt sich aus dem Drosselabfluss der Sonderbetriebsfläche $Q_{Dr}=1,34$ l/s und dem Drosselabfluss der Erschließungs- und Verkehrsflächen $Q_{Dr}=7,71$ l/s zusammen. Der gesamt Drosselabfluss beträgt somit 9,05 l/s.

Aufgestellt: Oldenburg im September 2023

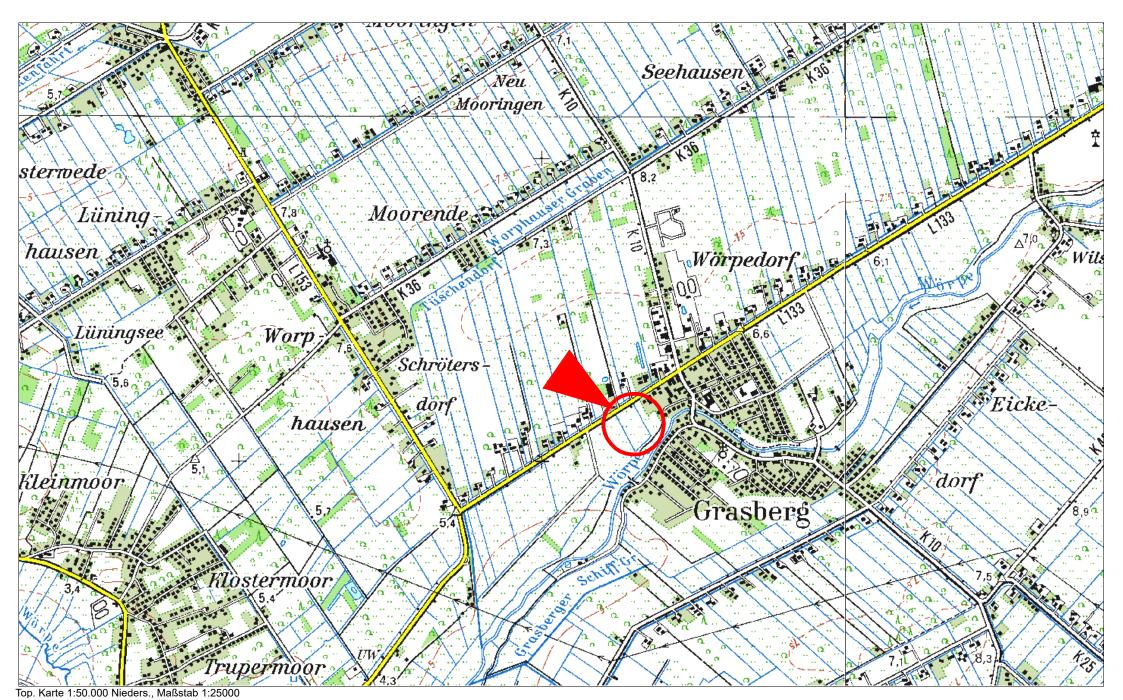
Ingenieurbüro Hirsch

D. Monnich

26121 Oldenburg

Ammerländer Heerstraße 231 26129 Oldenburg

Konzept für die Oberflächenentwässerung des Bebauungsplan Nr. 51 "Gewerbegebiet Grasberg West"


Anlage 1 - Übersichtskarte

Maßstab: 1:25.000

INGENIEURBÜRO HIRSCH

Dipl.-Ing. Gunnar Hirsch

Eike-von-Repkow-Straße 32a D-26121 Oldenburg Telefon 04 41 - 7 12 48 Telefax 04 41 - 777 53 76 Email mail@ib-hirsch.de

Ammerländer Heerstraße 231 26129 Oldenburg

Konzept für die Oberflächenentwässerung des Bebauungsplan Nr. 51 "Gewerbegebiet Grasberg West"

Anlage 2 – Lageplan

Maßstab: 1:500

INGENIEURBÜRO HIRSCH

Dipl.-Ing. Gunnar Hirsch

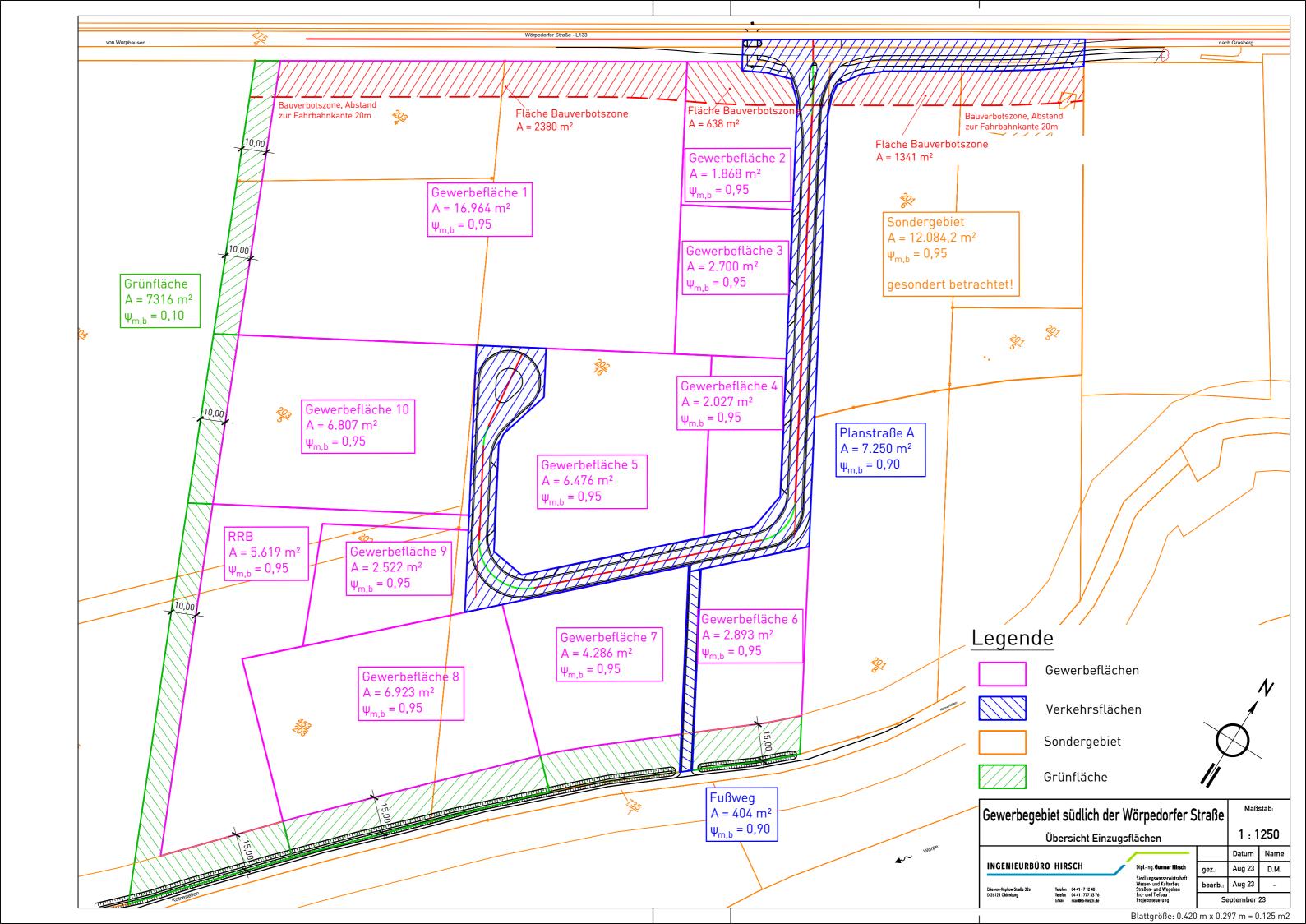
Eike-von-Repkow-Straße 32a D-26121 Oldenburg Telefon 04 41 - 7 12 48 Telefax 04 41 - 777 53 76 Email mail@ib-hirsch.de

Ammerländer Heerstraße 231 26129 Oldenburg

Konzept

für die Oberflächenentwässerung des Bebauungsplan Nr. 51 "Gewerbegebiet **Grasberg West"**

Anlage 3 – Übersicht Einzugsflächen


Maßstab: 1: 1.250

INGENIEURBÜRO HIRSCH

Dipl.-Ing. Gunnar Hirsch

Eike-von-Repkow-Straße 32a D-26121 Oldenburg

Telefon 04 41 - 7 12 48 Telefax 04 41 - 777 53 76 Email mail@ib-hirsch.de

Ammerländer Heerstraße 231 26129 Oldenburg

Konzept für die Oberflächenentwässerung des Bebauungsplan Nr. 51 "Gewerbegebiet Grasberg West"

Anlage 4 – KOSTRA Atlas des DWD in der Fassung 2020

KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Niederschlagshöhen nach **KOSTRA-DWD 2020**

: Spalte 130, Zeile 91 Rasterfeld

Ortsname : Grasberg (NI)

Bemerkung

Dauerstufe D		Niederschlagshöhen hN [mm] je Wiederkehrintervall T [a]							
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	6,6	8,0	8,9	10,0	11,6	13,2	14,3	15,8	17,8
10 min	8,5	10,3	11,4	12,8	14,9	17,0	18,4	20,2	22,9
15 min	9,7	11,7	13,0	14,6	16,9	19,4	21,0	23,0	26,0
20 min	10,6	12,8	14,1	15,9	18,5	21,1	22,8	25,1	28,3
30 min	11,9	14,3	15,8	17,8	20,7	23,7	25,6	28,2	31,8
45 min	13,3	16,0	17,7	19,9	23,1	26,4	28,6	31,5	35,5
60 min	14,3	17,3	19,1	21,5	25,0	28,5	30,9	33,9	38,3
90 min	15,9	19,2	21,2	23,9	27,8	31,7	34,3	37,7	42,6
2 h	17,1	20,7	22,9	25,7	29,9	34,2	37,0	40,6	45,9
3 h	19,0	22,9	25,3	28,5	33,1	37,9	41,0	45,0	50,9
4 h	20,4	24,6	27,3	30,7	35,6	40,7	44,1	48,4	54,7
6 h	22,6	27,3	30,2	34,0	39,4	45,1	48,8	53,6	60,5
9 h	25,0	30,2	33,4	37,6	43,6	49,9	54,0	59,3	67,0
12 h	26,9	32,4	35,9	40,4	46,9	53,6	58,0	63,7	72,0
18 h	29,7	35,9	39,7	44,7	51,9	59,3	64,1	70,5	79,6
24 h	32,0	38,5	42,6	48,0	55,7	63,7	68,9	75,7	85,5
48 h	38,0	45,8	50,6	57,0	66,2	75,6	81,8	90,0	101,6
72 h	42,0	50,6	56,0	63,0	73,2	83,7	90,5	99,5	112,4
4 d	45,1	54,4	60,1	67,7	78,6	89,8	97,2	106,8	120,7
5 d	47,6	57,5	63,6	71,6	83,1	95,0	102,7	112,9	127,5
6 d	49,8	60,1	66,5	74,9	86,9	99,3	107,5	118,1	133,4
7 d	51,8	62,5	69,1	77,8	90,3	103,2	111,7	122,7	138,6

Legende

Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder überschreitet

D $Dauerstufe\ in\ [min,\ h,\ d]:\ definierte\ Niederschlagsdauer\ einschließlich\ Unterbrechungen$

hN Niederschlagshöhe in [mm]

KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Niederschlagsspenden nach **KOSTRA-DWD 2020**

: Spalte 130, Zeile 91 Rasterfeld

Ortsname : Grasberg (NI)

Bemerkung

Dauerstufe D	Niederschlagspenden rN [l/(s·ha)] je Wiederkehrintervall T [a]								
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	220,0	266,7	296,7	333,3	386,7	440,0	476,7	526,7	593,3
10 min	141,7	171,7	190,0	213,3	248,3	283,3	306,7	336,7	381,7
15 min	107,8	130,0	144,4	162,2	187,8	215,6	233,3	255,6	288,9
20 min	88,3	106,7	117,5	132,5	154,2	175,8	190,0	209,2	235,8
30 min	66,1	79,4	87,8	98,9	115,0	131,7	142,2	156,7	176,7
45 min	49,3	59,3	65,6	73,7	85,6	97,8	105,9	116,7	131,5
60 min	39,7	48,1	53,1	59,7	69,4	79,2	85,8	94,2	106,4
90 min	29,4	35,6	39,3	44,3	51,5	58,7	63,5	69,8	78,9
2 h	23,8	28,8	31,8	35,7	41,5	47,5	51,4	56,4	63,8
3 h	17,6	21,2	23,4	26,4	30,6	35,1	38,0	41,7	47,1
4 h	14,2	17,1	19,0	21,3	24,7	28,3	30,6	33,6	38,0
6 h	10,5	12,6	14,0	15,7	18,2	20,9	22,6	24,8	28,0
9 h	7,7	9,3	10,3	11,6	13,5	15,4	16,7	18,3	20,7
12 h	6,2	7,5	8,3	9,4	10,9	12,4	13,4	14,7	16,7
18 h	4,6	5,5	6,1	6,9	8,0	9,2	9,9	10,9	12,3
24 h	3,7	4,5	4,9	5,6	6,4	7,4	8,0	8,8	9,9
48 h	2,2	2,7	2,9	3,3	3,8	4,4	4,7	5,2	5,9
72 h	1,6	2,0	2,2	2,4	2,8	3,2	3,5	3,8	4,3
4 d	1,3	1,6	1,7	2,0	2,3	2,6	2,8	3,1	3,5
5 d	1,1	1,3	1,5	1,7	1,9	2,2	2,4	2,6	3,0
6 d	1,0	1,2	1,3	1,4	1,7	1,9	2,1	2,3	2,6
7 d	0.9	1.0	1.1	1.3	1.5	1.7	1.8	2.0	2.3

Legende

Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder überschreitet

D $\label{lem:definition} Dauerstufe \ in \ [min, \ h, \ d]: \ definier te \ Niederschlags dauer \ einschließ lich \ Unterbrechungen$

rΝ Niederschlagsspende in [I/(s·ha)]

KOSTRA-DWD 2020

Nach den Vorgaben des Deutschen Wetterdienstes - Hydrometeorologie -

Toleranzwerte der Niederschlagshöhen und -spenden nach KOSTRA-DWD 2020

: Spalte 130, Zeile 91 Rasterfeld

Ortsname : Grasberg (NI)

Bemerkung

Dauerstufe D			Tol	eranzwerte UC	je Wiederkehrir	ntervall T [a] in [±%]		
	1 a	2 a	3 a	5 a	10 a	20 a	30 a	50 a	100 a
5 min	10	11	11	12	13	14	14	14	15
10 min	12	14	15	16	17	18	18	19	20
15 min	14	16	17	18	19	20	21	21	22
20 min	15	17	18	19	20	21	22	22	23
30 min	16	18	19	20	21	22	22	23	24
45 min	16	18	19	20	21	22	23	23	24
60 min	15	17	19	20	21	22	22	23	24
90 min	15	17	18	19	20	21	22	22	23
2 h	14	16	17	18	19	20	21	22	22
3 h	13	15	16	17	18	19	20	20	21
4 h	12	14	15	16	18	19	19	20	20
6 h	11	13	14	15	16	17	18	18	19
9 h	10	12	13	14	15	16	17	17	18
12 h	10	11	12	13	14	15	16	16	17
18 h	9	11	11	12	13	14	15	15	16
24 h	9	10	11	12	13	14	14	15	15
48 h	10	10	10	11	12	12	13	13	14
72 h	10	10	11	11	12	12	12	13	13
4 d	11	11	11	11	12	12	12	13	13
5 d	12	11	11	12	12	12	12	13	13
6 d	13	12	12	12	12	12	13	13	13
7 d	13	13	12	12	12	13	13	13	13

Legende

Wiederkehrintervall, Jährlichkeit in [a]: mittlere Zeitspanne, in der ein Ereignis einen Wert einmal erreicht oder überschreitet

D $Dauerstufe\ in\ [min,\ h,\ d]:\ definierte\ Niederschlagsdauer\ einschließlich\ Unterbrechungen$

UC Toleranzwert der Niederschlagshöhe und -spende in [±%]

Ammerländer Heerstraße 231 26129 Oldenburg

Konzept für die Oberflächenentwässerung des Bebauungsplan Nr. 51 "Gewerbegebiet Grasberg West"

Anlage 5 – Bemessung von Regenrückhalteräumen nach DWA - A 117 Sondergebiet

Eike-von-Repkow-Straße 32a D-26121 Oldenburg Dipl.-Ing. Gunnar Hirsch Siedlungswasserwirtschaft Wasser- und Kulturbau Straßen- und Wegebau Erd- und Tiefbau Projektsteuerung

nach DWA-A 117

Bestimmung der abflusswirksamen Flächen

lfd. Nr.	Bezeichnung der Fläche	Befestigte Fläche A _{E,b} [m ²]	$\begin{array}{c} \text{mittlerer} \\ \text{Abflussbeiwert} \\ \psi_{\text{m,b}} \\ \text{[-]} \end{array}$	undurchlässige Fläche A _u [m²]
1	Sondergebiet	12.084,2	0,95	11.480,0
2	Bauverbotszone	1.341,0	0,10	134,1
3				
4				
5				
6				
7				
8				
9				
10				
11				
12				
13				
14				
15				
16				
17				
А	unbefestigte Fläche		>	
В	Summe "undurchlässige Fläche"			11.614,1
С	Einzugsgebietsfläche	13.425,2		

nach DWA-A 117

INGENIEURBÜRO HIRSCH

Dipl.-Ing, Gunnar Hirsch

Eike-von-Repkow-Straße 32a
D-26121 Oldenburg

Telefan 04 41 - 7 12 48
Telefan 04 41 - 777 53 76
Email mail@ib-hirsch.de

Dipl.-Ing, Gunnar Hirsch

Siedlungswasserwirtschaft
Wasser- und Kulturbau
Straßen- und Wegebau
Erd- und Tiefbau
Projektsteuerung

Ermittlung des Drosselabflusses

Drosselabflussspende	\mathbf{q}_{Dr}	1,00	l/ _{s·ha}
Einzugsgebietsfläche	\mathbf{A}_{E}	13.425,20	m²
Drosselabfluss	\mathbf{Q}_{Dr}	1,34	¹ / _s

Niederschlag

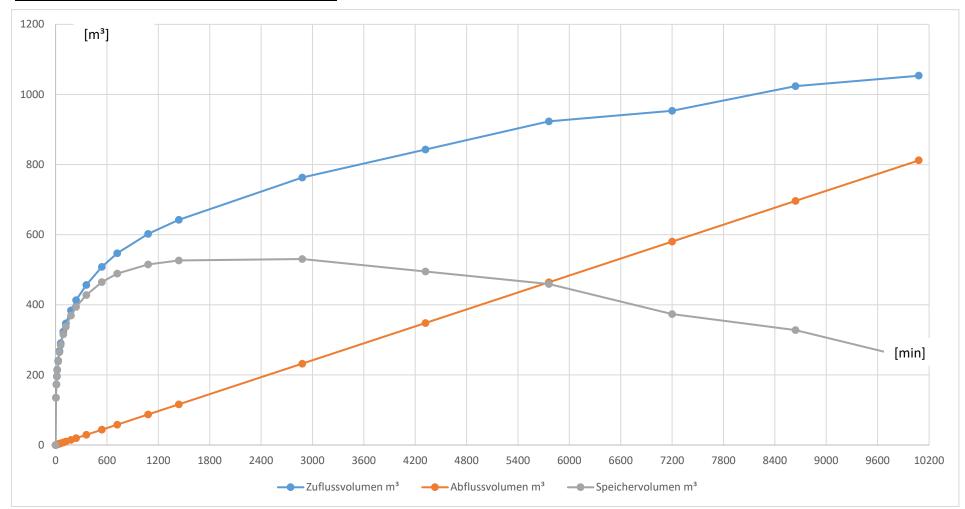
KOSTRA-Feld	Spalte	130	-
	Zeile	91	-
Wiederkehrzeit	T _n	10	a

nach DWA-A 117

Ermittlung des Rückhalteraumes

Dauerstufe		Regenspende	Zuflussvolumen	Abflussvolumen	Speichervolumen
		r _{D,n}	$r_{D,n}\cdot A_u\cdot t$	$Q_{Dr} \cdot t$	Zufluss - Abfluss
		$[']/_{s \cdot ha}]$	[m³]	[m³]	[m³]
5	min	386,7	134,7	0,40	134,33
10	min	248,3	173,0	0,81	172,22
15	min	187,8	196,3	1,21	195,09
20	min	154,2	214,9	1,61	213,30
30	min	115,0	240,4	2,42	238,00
45	min	85,6	268,4	3,62	264,80
60	min	69,4	290,2	4,83	285,33
90	min	51,5	323,0	7,25	315,74
2	h	41,5	347,0	9,67	337,36
3	h	30,6	383,8	14,50	369,32
4	h	24,7	413,1	19,33	393,76
6	h	18,2	456,6	29,00	427,57
9	h	13,5	508,0	43,50	464,50
12	h	10,9	546,9	58,00	488,89
18	h	8,0	602,1	87,00	515,08
24	h	6,4	642,2	115,99	526,22
48	h	3,8	762,6	231,99	530,64
72	h	2,8	842,9	347,98	494,92

nach DWA-A 117


INGENIEURBÜRO HIRSCH

Dipl.-Ing. Gunnar Hirsch

Siedlungswasserwirtschaft
Wasser und Kulturbau

Straßen - und Wegebau
Erd- und Tiefbau
Erd- und Tiefbau
Projektsteuerung

Graphische Darstellung der Volumina

nach DWA-A 117

Dipl.-Ing. Gunnar Hirsch

Siedlungswasserwirtschaft
Wasser- und Kulturbau

Eike-von-Repkow-Straße 32a
D-26121 Oldenburg

Telefan 04 41 - 712 48
Telefax 04 41 - 777 53 76
Telefax 04 41 - 777 53 76
Telefax 04 41 - 777 53 76

Email mail@ib-hirsch.de

Projektsteuerung

Herzustellendes Speichervolumen

Erforderliches Speichervolumen	V_{erf}	530,6	m³
Toleranzwert	Uc	12	%
Volumen des Rückhalteraumes	V	594,3	m³
vorh. Speichervolumen	V_{vorh}	600,0	m³
		(101,0%)	
rechnerische Entleerungszeit	t _{Ent}	6.587,6	min
		109,8	h
		4,6	d

Ammerländer Heerstraße 231 26129 Oldenburg

Konzept für die Oberflächenentwässerung des Bebauungsplan Nr. 51 "Gewerbegebiet Grasberg West"

Anlage 6 – Bemessung von Regenrückhalteräumen nach DWA - A 117 Gewerbegebiet

Dipl.-Ing. Gunnar Hirsch Siedlungswasserwirtschaft Wasser- und Kulturbau Straßen- und Wegebau Eike-von-Repkow-Straße 32a D-26121 Oldenburg Telefon 04 41 - 77 12 48 Telefax 04 41 - 777 53 76 Email mail@ib-hirsch.de Telefax 04 41 - 777 53 76 Email mail@ib-hirsch.de

nach DWA-A 117

Bestimmung der abflusswirksamen Flächen

lfd. Nr.	Bezeichnung der Fläche	Befestigte Fläche A _{E,b} [m²]	$\begin{array}{c} \text{mittlerer} \\ \text{Abflussbeiwert} \\ \Psi_{\text{m,b}} \\ \text{[-]} \end{array}$	undurchlässige Fläche A _u [m²]
1	Gewerbefläche 1	16.964,0	0,95	16.115,8
2	Gewerbefläche 2	1.868,0	0,95	1.774,6
3	Gewerbefläche 3	2.700,0	0,95	2.565,0
4	Gewerbefläche 4	2.027,0	0,95	1.925,7
5	Gewerbefläche 5	6.476,0	0,95	6.152,2
6	Gewerbefläche 6	2.893,0	0,95	2.748,4
7	Gewerbefläche 7	4.286,0	0,95	4.071,7
8	Gewerbefläche 8	6.923,0	0,95	6.576,9
9	Gewerbefläche 9	2.522,0	0,95	2.395,9
10	Gewerbefläche 10	6.807,0	0,95	6.466,7
11	RRB	5.619,0	0,95	5.338,1
12	Planstraße A	7.250,0	0,90	6.525,0
13	Fußweg	404,0	0,90	363,6
14	Grünfläche	7.316,0	0,10	731,6
15	Bauverbotszone	3.018,0	0,10	301,8
16				
17				
А	unbefestigte Fläche		\geq	
В	Summe "undurchlässige Fläche"		>	64.052,8
С	Einzugsgebietsfläche	77.073,0	><	

nach DWA-A 117

INGENIEURBÜRO HIRSCH

Dipl.-Ing. Gunnar Hirsch

Siedlungswasserwirtschaft
Wasser- und Kulturbau
Straßer- und Kulturbau
Straßer- und Tiefbau
Projektsteuerung

Ermittlung des Drosselabflusses

Drosselabflussspende	\mathbf{q}_{Dr}	1,00	l/ _{s·ha}
Einzugsgebietsfläche	A_{E}	77.073,00	m²
Drosselabfluss	\mathbf{Q}_{Dr}	7,71	¹ / _s

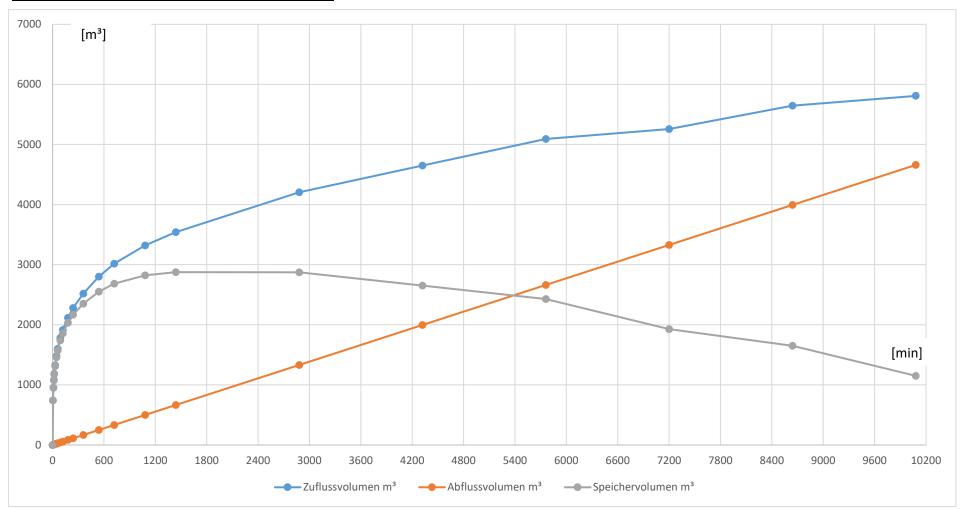
Niederschlag

KOSTRA-Feld	Spalte	130	-
	Zeile	91	-
Wiederkehrzeit	T _n	10	a

nach DWA-A 117

Ermittlung des Rückhalteraumes

Dauerstufe		Regenspende	Zuflussvolumen	Abflussvolumen	Speichervolumen
		r _{D,n}	$r_{D,n}\cdot A_u\cdot t$	$Q_{Dr} \cdot t$	Zufluss - Abfluss
		[[m³]	[m³]	[m³]
5	min	386,7	743,1	2,31	740,76
10	min	248,3	954,3	4,62	949,63
15	min	187,8	1.082,6	6,94	1075,68
20	min	154,2	1.185,2	9,25	1175,98
30	min	115,0	1.325,9	13,87	1312,02
45	min	85,6	1.480,4	20,81	1459,58
60	min	69,4	1.600,3	27,75	1572,55
90	min	51,5	1.781,3	41,62	1739,69
2	h	41,5	1.913,9	55,49	1858,40
3	h	30,6	2.116,8	83,24	2033,58
4	h	24,7	2.278,2	110,99	2167,24
6	h	18,2	2.518,0	166,48	2351,56
9	h	13,5	2.801,7	249,72	2551,95
12	h	10,9	3.016,1	332,96	2683,16
18	h	8,0	3.320,5	499,43	2821,06
24	h	6,4	3.541,9	665,91	2875,95
48	h	3,8	4.206,0	1331,82	2874,14
72	h	2,8	4.648,7	1997,73	2650,96


nach DWA-A 117

INGENIEURBÜRO HIRSCH

Dipl.-Ing. Gunnar Hirsch

Siedlungswasserwirtschaft
Wasser- und Kulturbau
Straßen- und Wegebau
Telefax 04 41 - 777 53 76
Email mall@ib-hirsch.de
Projektsteuerung

Graphische Darstellung der Volumina

nach DWA-A 117

INGENIEURBÜRO HIRSCH

Dipl.-Ing. Gunnar Hirsch

Siedlungswasserwirtschaft
Wasser- und Kulturbau

Elke-von-Repkow-Straße 32a
D-26121 Oldenburg

Telefon 04 41 - 712 48
Telefax 04 41 - 777 53 76

Erd- und Tiefbau

Email mail@ib-hirsch.de

Projektsteuerung

Herzustellendes Speichervolumen

Erforderliches Speichervolumen	\mathbf{V}_{erf}	2.876,0	m³
Toleranzwert	Uc	12	%
Volumen des Rückhalteraumes	V	3.221,1	m³
vorh. Speichervolumen	V_{vorh}	3.465,9 (107,6%)	m³
rechnerische Entleerungszeit	t _{Ent}	6.219,1 103,7 4,3	min h d

Ammerländer Heerstraße 231 26129 Oldenburg

Konzept für die Oberflächenentwässerung des Bebauungsplan Nr. 51 "Gewerbegebiet Grasberg West"

Anlage 7 - Berechnung Drosselöffnung

Grundlage für die Berechnung ist folgende Formel:

$$Q = \mu \cdot A \cdot \forall (2 \cdot g \cdot h)$$

μ = AbflussbeiwertA = Drosselöffnungg = Erdbeschleunigung

h = mittlere Höhe vom max. Wasserspiegel bis Mitte Öffnung

Berechnung A:

 $\begin{array}{llll} \mu & = & 0,607 \\ g & = & 9,81 \text{ m/s}^2 \\ h & = & 0,88 \text{ m} \\ Q & = & 9,05 \text{ l/s} \\ Q & = & 0,00905 \text{ m}^3/\text{s} \end{array}$

 $A = Q/(\mu \cdot \sqrt{2 \cdot g \cdot h})$

 $A = 0,00360 \text{ m}^2$ $A = 3598,4 \text{ mm}^2$

Durchmesser Drosselöffnung:

$$A = (\pi \cdot d^2) / 4$$

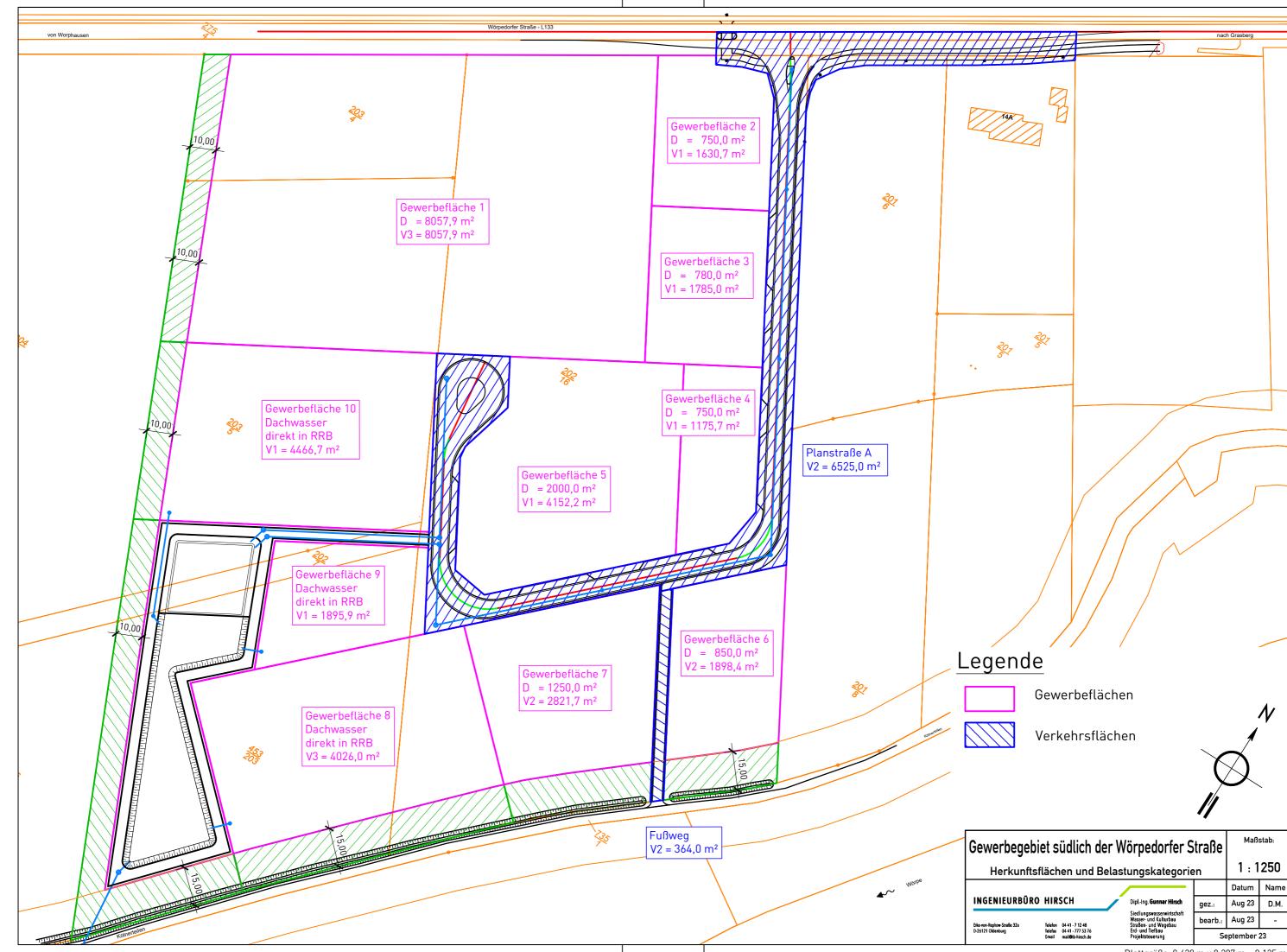
$$d = \sqrt{(A \cdot 4)} / \pi$$

 $d = \underline{67,7} \underline{mm}$

Ammerländer Heerstraße 231 26129 Oldenburg

Konzept für die Oberflächenentwässerung des Bebauungsplan Nr. 51 "Gewerbegebiet Grasberg West"

Anlage 8 – Übersicht Herkunftsflächen und Belastungskategorien


Maßstab: 1: 1.250

Dipl.-Ing. Gunnar Hirsch

Eike-von-Repkow-Straße 32a
D-26121 Oldenburg

Telefon 04 41 - 7 12 48
Telefax 04 41 - 777 53 76
Email mail@ib-hirsch.de

Telefax 04 41 - 777 53 76
Email mail@ib-hirsch.de

Ammerländer Heerstraße 231 26129 Oldenburg

Konzept für die Oberflächenentwässerung des Bebauungsplan Nr. 51 "Gewerbegebiet Grasberg West"

Anlage 9 – Bemessung nach M102 – Herkunftsflächen und Belastungskategorien

INGENIEURBÜRO HIRSCH Dipl.-Ing. Gunnar Hirsch Siedlungswasserwirtschaft Wasser- und Kulturbau Straßen- und Wegebau Erd- und Tiefbau Projektsteuerung

Herkunftsflächen und Belastungskategorien

Pauschale Flächenermittlung mit Flächentypen laut Tabelle 1.1, Anhang A

Flächentypen	Flächen A _{b,a}	davon		
		Kategorie I	Kategorie II	Kategorie III
	[ha]	[ha]	[ha]	[ha]
Dachflächen	2,08	2,08	0,00	0,00
Verkehrsflächen	0,69	0,00	0,69	0,00
Hof- und Nebenflächen	2,55	0,87	0,47	1,21
Summenwert	5,32	2,95	1,16	1,21
Anteil in Prozent	100%	55%	22%	23%

Bilanzierung des Stoffabtrags

Kategorie I = $280 \text{ kg/(ha*a)} = b_{R,a,AFS63,I}$ Kategorie II = $530 \text{ kg/(ha*a)} = b_{R,a,AFS63,II}$ Kategorie III = $760 \text{ kg/(ha*a)} = b_{R,a,AFS63,III}$

 $B_{R,a,AFS63,II} = 827 \text{ kg/a} \ B_{R,a,AFS63,III} = 615 \text{ kg/a} \ B_{R,a,AFS63,III} = 918 \text{ kg/a}$

Soffabtrag gesamt:

 \sum B _{R,a,AFS63} = 2361 kg/a

resultierender flächenspezifischer Stoffabtrag:

 $b_{R,a,AFS63} = B_{R,a,AFS63} / A_{b,a}$

 $b_{R,a,AFS63} = 443 \text{ kg/a}$

Wirkungsgrad der Behandlungsmaßnahme

Flächenspezifischer Stoffabtrag: $b_{R,a,AFS63} = 443 \text{ kg/a}$ zulässiger flächenspezifischer Stoffaustra $b_{R,e,zul,AFS63} = 280 \text{ kg/(ha*a)}$

Erforderlicher Stoffrückhalt (erforderlicher Wirkungsgrad nerf)

 $\eta_{erf} = (1 - b_{R,e,zul,AFS63} / b_{R,a,AFS63})$

 η_{erf} = 36,9 %

Ammerländer Heerstraße 231 26129 Oldenburg

Konzept für die Oberflächenentwässerung des Bebauungsplan Nr. 51 "Gewerbegebiet Grasberg West"

Anlage 10 - Bemessung zentrale Behandlungsanlage

Gemeinde Grasberg

Bebauungsplan Nr. 51 " Gewerbegebiet Grasberg West" Niederschlagsentwässerung

Hydraulische Nachweise

Bemessung Absetzzone

Abmessungen Absetzraum nach RiStWag 8.4.3

Die erforderliche Oberfläche des Absetzraumes ergibt sich aus dem Verhältnis des Bemessungszuflusses Q_b zur Steiggeschwindigkeit der Leichtflüssigkeit V_s

$$A_{erf} = \frac{Q_b}{V_s}$$

Q_b = Dimension des Regenwasserkanals

$$Q_b = 1,09 \text{ m}^3/\text{s}$$

$$V_s = 0,0025 \text{ m/s}$$
 (Tabellenwert)

$$\underline{A}_{erf} = \underline{436,41} \underline{m}^2$$

Das Abesetzbecken erhält ein Trapezquerschnitt

Die Unterkante des Abesetzraumes ergibt sich über die horizontale Fließgeschwindigkeit v_h des Bemessungszuflusses Q_b unterhalb der Abflusstauchwand

Bedingung: $v_h = max. 0.05 m/s$

$$v_h = \frac{Q_b}{A}$$

$$v_h = \frac{Q_b}{b * h}$$

Berechnung der Schlammraumhöhe:

$$v_h = \frac{Q_b}{b * h}$$
 $h = \frac{Q_b}{v_h * b}$

$$v_h = 0.05 \text{ m/s}$$

$$Q_b = 1,09 \text{ m}^3/\text{s}$$

gewählt:
$$\underline{h} = \underline{0.75} \underline{m}$$

Berechnung des Schlammraumvolumens:

$$A_U$$
 = 754,70 m² (Fläche unten, Ermittelt über CAD)
 A_O = 839,00 m² (Fläche oben, Ermittelt über CAD)
 h = 0,75 m
 V = $\frac{h}{3}$ * (AU + V(Au*Ao) + Ao)

 $\underline{V} = \underline{597,4} \underline{m}^3$

Ammerländer Heerstraße 231 26129 Oldenburg

Konzept für die Oberflächenentwässerung des Bebauungsplan Nr. 51 "Gewerbegebiet Grasberg West"

Anlage 11 - Bemessung Absetzzone

Bemessung einer zentralen Behandlungsanlage im Trennsystem

Berechnung Q R,krit

Q_{R.krit} = Regenwasserzufluss zur Behandlungsanlage

 $Q_{R,krit}$ = 1091,03 l/s

Fremdwasserabfluss Q_F

nicht berücksichtigt da Neubau

Bemessung der Oberflächenbeschickung q A.Bem

$$q_{A,Bem} = 3.6 * Q_{R,krit} / A_{sed}$$

$$Q_{R,krit}$$
 = 1091,03 l/s

$$q_{A,Bem} = 4,68 \text{ m/h}$$

Sedimentationswirkungsgrad η_{sed}

$$2,1-4 \triangleq 41\%$$
 (siehe Tabelle B.1)

Für das Gesamtgebiet bei einer zentralen Behandlungsanlage

$$B_{R,a,AFS63}$$
 (neu) = (1- η_{sed}) * $b_{R,a,AFS63}$
 $B_{R,a,AFS63}$ (neu) = 279,62 kg/a

$$B_{R,a,AFS63}$$
 (neu) = 279,62 < $B_{R,a,AFS63}$ = 280 kg/a

Anforderung erfüllt

Ammerländer Heerstraße 231 26129 Oldenburg

Konzept für die Oberflächenentwässerung des Bebauungsplan Nr. 51 "Gewerbegebiet Grasberg West"

Anlage 12 - Baugrunduntersuchung

